extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×Dic5).1C4 = C5⋊3(C23⋊C8) | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).1C4 | 320,26 |
(C22×Dic5).2C4 = (C2×Dic5)⋊C8 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).2C4 | 320,27 |
(C22×Dic5).3C4 = M4(2)⋊Dic5 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).3C4 | 320,112 |
(C22×Dic5).4C4 = M4(2).19D10 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 80 | 8- | (C2^2xDic5).4C4 | 320,372 |
(C22×Dic5).5C4 = C2×C20.47D4 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).5C4 | 320,763 |
(C22×Dic5).6C4 = (C2×C20)⋊1C8 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).6C4 | 320,251 |
(C22×Dic5).7C4 = (C22×C4).F5 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).7C4 | 320,252 |
(C22×Dic5).8C4 = C22.(C4×F5) | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).8C4 | 320,257 |
(C22×Dic5).9C4 = C24.F5 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).9C4 | 320,271 |
(C22×Dic5).10C4 = C2×Dic5.D4 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).10C4 | 320,1098 |
(C22×Dic5).11C4 = (C2×D4).9F5 | φ: C4/C1 → C4 ⊆ Out C22×Dic5 | 80 | 8- | (C2^2xDic5).11C4 | 320,1115 |
(C22×Dic5).12C4 = (C2×C40)⋊15C4 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).12C4 | 320,108 |
(C22×Dic5).13C4 = Dic5.14M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).13C4 | 320,345 |
(C22×Dic5).14C4 = Dic5.9M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).14C4 | 320,346 |
(C22×Dic5).15C4 = D5×C22⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).15C4 | 320,351 |
(C22×Dic5).16C4 = D10⋊7M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).16C4 | 320,353 |
(C22×Dic5).17C4 = C2×C20.8Q8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).17C4 | 320,726 |
(C22×Dic5).18C4 = C2×C40⋊8C4 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).18C4 | 320,727 |
(C22×Dic5).19C4 = C2×D10⋊1C8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).19C4 | 320,735 |
(C22×Dic5).20C4 = M4(2)×Dic5 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).20C4 | 320,744 |
(C22×Dic5).21C4 = Dic5⋊5M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).21C4 | 320,745 |
(C22×Dic5).22C4 = D10⋊8M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).22C4 | 320,753 |
(C22×Dic5).23C4 = C22×C8⋊D5 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).23C4 | 320,1409 |
(C22×Dic5).24C4 = C2×D5×M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).24C4 | 320,1415 |
(C22×Dic5).25C4 = C10.(C4⋊C8) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).25C4 | 320,256 |
(C22×Dic5).26C4 = C2×C4×C5⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).26C4 | 320,1084 |
(C22×Dic5).27C4 = C2×C20⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).27C4 | 320,1085 |
(C22×Dic5).28C4 = Dic5.12M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).28C4 | 320,1086 |
(C22×Dic5).29C4 = C2×C10.C42 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).29C4 | 320,1087 |
(C22×Dic5).30C4 = C4×C22.F5 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).30C4 | 320,1088 |
(C22×Dic5).31C4 = C2×Dic5⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).31C4 | 320,1090 |
(C22×Dic5).32C4 = C20.34M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).32C4 | 320,1092 |
(C22×Dic5).33C4 = Dic5.13M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).33C4 | 320,1095 |
(C22×Dic5).34C4 = C20⋊8M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).34C4 | 320,1096 |
(C22×Dic5).35C4 = C20.30M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).35C4 | 320,1097 |
(C22×Dic5).36C4 = C2×C23.2F5 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).36C4 | 320,1135 |
(C22×Dic5).37C4 = C24.4F5 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 80 | | (C2^2xDic5).37C4 | 320,1136 |
(C22×Dic5).38C4 = C23×C5⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 320 | | (C2^2xDic5).38C4 | 320,1605 |
(C22×Dic5).39C4 = C22×C22.F5 | φ: C4/C2 → C2 ⊆ Out C22×Dic5 | 160 | | (C2^2xDic5).39C4 | 320,1606 |
(C22×Dic5).40C4 = C2×C8×Dic5 | φ: trivial image | 320 | | (C2^2xDic5).40C4 | 320,725 |
(C22×Dic5).41C4 = D5×C22×C8 | φ: trivial image | 160 | | (C2^2xDic5).41C4 | 320,1408 |